Home About Us People Dr. Vikram Sunkara
Explainable AI for inflammation
Dr. Vikram Sunkara
 

Explainable AI for inflammation

Dr. Vikram Sunkara

Dr. Vikram Sunkara
Zuse Institute Berlin, FU Berlin
Explainable AI for Biology
Takustr. 7 Room 4024 (ZIB)
Telefon: +49 (0)30 841 85432 (ZIB)

E-Mail:
Sunkara@zib.de
Sunkara@mi.fu-berlin.de
Phone: +49 (0)30 841 85432 (ZIB) sunkara@zib.de

Contact:

Zuse Institut Berlin

Workgroup at Zuse: Explainable AI for Biology
E-Mail:
Sunkara@zib.de
Sunkara@mi.fu-berlin.de

Scientific Career

  • Since 2021 Head of Explainable A.I. for Biology (Zuse Institute Berlin)
  • 2015-2021 Research Associate at Mathematics of Complex Systems (ZIB) and Biocomputing Group (FU Berlin)
  • 2014-2015 Research Associate at the Department of Mathematics and Statistics at University of Adelaide (UOA)
  • 2012-2014 Research Associate in Numerical mathematics at the Karlsruhe Institute of Technology (KIT)

Education

  • 2004-2008 Bachelors of Mathematics Advanced Honours (First Class), University of Wollongong (Australia)
  • 2009-2013 Doctor of Philosophy at the The Australian National University. Title: Analysis and Numerics of the Chemical Master Equation.

Boards and Memberships

Boards

  • 2018-2021DFG Centre of Excellence Math+ Board member (postdoc rep)
  • 2018-2021 DFG Centre of Excellence Math+ Gender and Diversity Committee

Third Party Funding

  • DFG Centre of Excellence Math+ — 2022—2025
  • Math Powered Drug Design

Key Publications

Mustafa Chaukair, Christof Schütte, Vikram Sunkara. On the Activation Space of ReLU Equipped Deep Neural Networks.
https://doi.org/10.1016/j.procs.2023.08.200

Vikram Sunkara, Gitta A Heinz, Frederik F Heinrich, Pawel Durek, Ali Mobasheri, Mir- Farzin Mashreghi, Annemarie Lang.
Combining segmental bulk-and single-cell RNA-sequencing to define the chondrocyte gene expression signature in the murine knee joint.
https://doi.org/10.1016/j.joca.2021.03.007

Felix Peppert, Max von Kleist, Christof Schütte, Vikram Sunkara.
On the sufficient condition for solving the Gap-filling problem using Deep Convolutional Neural Networks.
10.1109/TNNLS.2021.3072746

Alexia N. Raharinirina, Felix Peppert, Max von Kleist, Christof Schütte, Vikram Sunkara. Inferring gene regulatory networks from single-cell RNA-seq temporal snapshot data requires higher-order moments
https://doi.org/10.1016/j.patter.2021.100332

 

Print
Share
Sign up for the
DRFZ NewsFlash